谷歌介绍“交通疏导”AI 模型研究成果:平均缩短 7 分钟拥堵时间、提升 30% 交通效率
栏目:成果介绍 发布时间:2024-08-12

  IT之家12 月 25 日消息,谷歌研究院日前发文,介绍了一项利用开源模拟软件 SUMO(Simulation of Urban Mobility)打造的“交通疏导”AI 模型应用成果。

  据悉,谷歌研究人员使用 SUMO 软件建立了西雅图 T-Mobile Park 及 Lumen Field 地区的基础模型,并利用了谷歌地图提供的“拥堵量”、“红绿灯位置”、“道路平均行驶速度”等信息绘制了完整的热力地图。

  在此之后,研究团队将热力地图划分为不同的区域,并引入“用户行为模型”及西雅图警察局提供的路线建议,从而建立了一项可为车主分配最佳路线的“交通疏导”模型。

  IT之家从新闻稿获悉,谷歌研究人员与美国西雅图交通部合作,在 2023 年 8 月及 11 月在多项大型活动中实际应用了这项交通疏导AI模型,配合“动态引导显示屏(Dynamic Message Signs)”,平均缩短了 7 分钟拥堵时间,成功提升30%交通效率。

  谷歌声称,这项研究能够展现“模拟技术”在交通规划方面的潜力,从而在大型活动场合提升交通效率,并能够让道路规划者了解“利用率低”的路段,从而改善整体交通环境。

  广告声明:文内含有的对外跳转链接(包括不限于超链接、二维码、口令等形式),用于传递更多信息,节省甄选时间,结果仅供参考,IT之家所有文章均包含本声明。

  银河集团网址登录


本文由:银河国际科学研究院提供